Publication

Degradation of biomaterials by Streptomyces microflavus DG19: depolymerization activity, genome mining, and soil burial assessment

Cover Image for Degradation of biomaterials by Streptomyces microflavus DG19: depolymerization activity, genome mining, and soil burial assessment

The accumulation of plastic waste remains a significant environmental challenge despite the alarming evidence and public efforts, emphasizing the need for biodegradable alternatives and appropriate remediation strategies. In this study, Streptomyces microflavus DG19 was evaluated for capacity to degrade a selection of biomaterials that are increasingly penetrating market as readily degradable alternatives. S. microflavus DG19 rapidly degraded poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films in liquid culture (96% weight loss in 7 days) and demonstrated activity against poly(ε-caprolactone) in both agar-based and liquid culture experiments and against cellulose in Congo red assay. 3-Hydroxybutyrate and lactic acid were also metabolized. Genomic analysis identified a number of enzymes involved in carbohydrate and bioplastic degradation. A putative extracellular poly(3-hydroxybutyrate) (PHB) depolymerase (SmPHBase) containing a variant substrate binding domain, and other enzymes involved in 3-hydroxybutyrate metabolism, were of special interest. The presence of > 30 biosynthetic gene clusters highlights this strain’s potential for upcycling bioplastic-containing waste. Soil burial tests demonstrated substantial weight loss in pure biomaterial films and multilayer consumable items containing PHB, showcasing the applicability of S. microflavus DG19 as a composting enhancer. Overall, the findings highlight the pertinence of specialized bacterial strains to biomaterial recycling and upcycling.

Read more here

Project title

Eco conversion of lower grade PET and mixed recalcitrant PET plastic waste into high performing biopolymers

Go to CORDIS profile
European Union logo

This project has received funding from the European Union’s Horizon Europe EIC Pathfinder programme under grant agreement No 101046758

European Innovation Council logo

The project leading to this application has received funding from the European Union’s Horizon Europe EIC Pathfinder programme under agreement No 101046758

LegalTerms of usePrivacy policy

Stay tuned!

Join our newsletter to receive project updates

EcoPlastic logo

Copyright © 2022 EcoPlastiC

Views and opinions expressed are of the author(s) only and do not necessarily reflect those of the European Union or European Innovation Council. Neither the European Union nor the granting authority can be held responsible for them.